
Postprint, September 2018

Discovering Microservices in Enterprise Systems Using

a Business Object Containment Heuristic

Adambarage Anuruddha Chathuranga De Alwis1, Alistair Barros1,

Colin Fidge1, and Artem Polyvyanyy2

1 Queensland University of Technology, Brisbane, Australia

{adambarage.dealwis,alistair.barros,c.fidge}@qut.edu.au
2 The University of Melbourne, Parkville, VIC, 3010, Australia

artem.polyvyanyy@unimelb.edu.au

Abstract. The growing impact of IoT and Blockchain platforms on business ap-

plications has increased interest in leveraging large enterprise systems as Cloud-

enabled microservices. However, large and monolithic enterprise systems are

unsuitable for flexible integration with such platforms. This paper presents a tech-

nique to support the re-engineering of an enterprise system based on the funda-

mental mechanisms for structuring its architecture, i.e., business objects managed

by software functions and their relationships which influence business object inter-

actions via the functions. The technique relies on a heuristic for deriving business

object exclusive containment relationships based on analysis of source code and

system logs. Furthermore, the paper provides an analysis of distributing enter-

prise systems based on the business object containment relationships using the

NSGA II software clustering and optimization technique. The heuristics and the

software clustering and optimization techniques have been validated against two

open-source enterprise systems: SugarCRM and ChurchCRM. The experiments

demonstrate that the proposed approach can identify microservice designs which

support multiple desired microservice characteristics, such as high cohesion, low

coupling, high scalability, high availability, and processing efficiency.

Keywords: Microservice discovery, system reengineering, cloud migration

1 Introduction

Microservices have been introduced to the software industry as the latest form of service-

based software, allowing systems to be distributed through the Cloud as fine-grained

components, containing individual operations, in contrast to services under a Service-

Oriented Architecture (SOA) which includes all logically related operations [1]. Such

loosely coupled, highly cohesive composition of the microservices enables scaling up

and replication of specific parts of systems and business processes through the Cloud,

and allows them to be flexibly composed in Web, mobile computing, and Internet-of-

Things (IoT) applications.

Such benefits have led NetflixTM, and now TwitterTM, eBayTM and AmazonTM to

develop novel architectures for software solutions as microservices. Nonetheless, mi-

croservices have so far not been adopted for the dominant form of software in businesses,

namely enterprise systems, limiting such systems’ evolution and their exploitation of the



full benefits of cloud-enabled platforms such as Google Cloud and Amazon AWS. In par-

ticular, this limits the evolution of business applications involving IoT and blockchain [2].

Enterprise systems, such as enterprise resource planning (ERP), customer relation-

ship management (CRM) and supply chain management (SCM), are large and complex

and contain complex business processes encoded in application logic managing business

objects, in typically many-to-many relationships [3]. Restructuring enterprise systems

as microservices is technically cumbersome. It requires tedious search and identification

of suitable parts of the system to restructure, program code rewrites, and the integration

of the newly developed microservices with the remaining ‘backend’ enterprise systems.

This is a costly and error-prone task for developers, mainly due to two reasons. Firstly, it

is difficult to identify the functional dependencies between different functions and oper-

ations by examining millions of lines of code in the system. Secondly, it is challenging to

figure out an optimal splitting of the system functionalities as fine-grained microservices

while minimizing the communication cost (i.e. service calls) between them in order to

provide better availability and processing efficiency.

Automated software re-engineering techniques have been proposed to improve the

efficiency of transforming legacy applications, structures [4], specifically focusing on

optimizing cohesion and coupling of software packages and components using static

analysis techniques that focus on source code [5] and dynamic analysis techniques that

focus on software execution patterns and system logs [6]. However, these techniques

have, to date, not been applied to the re-engineering challenges of microservices, which

are more fine-grained (i.e single operational functions) and distributed compared to

Service-Oriented-Architecture (SOA) services in which multiple operations are com-

bined within a single function.

Enterprise systems provide semantic insights, available through the business objects

that they manage, which influence the software structure and the processes they support.

For instance, an order-to-cash process in SAP ERP is supported through functions of

software components: multiple sales orders, deliveries shared across different customers,

shared containers in transportation carriers, and multiple invoices and payments. To

support this process, multiple functions are invoked asynchronously, reflecting business

object relationship types and cardinalities, and these can be seen through cross-service

interactions, correlations, and data payloads [7]. Such insights provided by business

object relationships are promising for improving the feasibility of automated system re-

engineering, where modules correspond to single business objects. As examples, Pẽrez-

Castillo et al. [8] used the transitive closure of strong business object dependencies

derived from databases to recommend software function hierarchies, while Lu et al. [9]

demonstrated process discovery using SAP ERP logs based on business objects.

This paper presents discovery techniques that support the identification of suitable

consumer-oriented parts of enterprise systems which could be re-engineered as microser-

vices based on the knowledge gained through business object relationships and their

execution patterns. Specifically, the paper addresses two fundamental areas of microser-

vice discovery, namely exclusive containment of business object relationships, while

analysing the cost and complexity of functional calls between different microservices

based on a heuristic rule by optimizing the Non-dominated Sorting Genetic Algorithm



(NSGA) II. Experiments were conducted on SugarCRM3 and ChurchCRM4 to validate

the presented methodology and showed that it can identify microservice designs which

support multiple microservice characteristics, such as high cohesion, low coupling, high

scalability, high availability, and processing efficiency while preserving coherent fea-

tures of enterprise systems and minimizing the overall communication overhead of the

system.

The remainder of the paper is structured as follows. Section 2 presents a contain-

ment heuristic, while Section 3 describes a microservice discovery process based on the

heuristic. Section 4 discusses an implementation and validation of the proposed tech-

nique. Related work is summarized in Section 5. The paper closes with a conclusion.

2 Containment Relationships and Heuristic

Enterprise systems (ESs) use different Business Objects (BOs) to store the information

related to their functionality, and these BOs have different relationships between them.

For example, the creation of a ‘purchase order’ will result in the invocation of functions

involved in the creation of ‘line items’ reflecting an exclusive containment of business

objects. It is important to identify such relationships between BOs, since microservices

(MSs) are functionally isolated and loosely-coupled parts connected to each other, much

like components of a distributed system, and typically focus on individual BOs, locally

managed through a database [10]. A better understanding of such BO relationships can

be obtained through the following formal characterization.

Given an ES s, by OPs , As , Ts , and Bs , we refer to the set of its all operations,

attributes, database tables, and business objects, respectively. We will omit the sub-

scripts where the context is clear. We define domination and exclusive containment

relationships over business objects as follows.

Definition 2.1 (Domination [11] and exclusive containment [12] relationships)

Given two business objects b, b′ ∈ B, of an ES we say that:

◦ b dominates b′ iff for every create or delete operation op ∈ OP that either uses some

attribute of b′ as one of its input parameters or writes its result into some attribute of

b′, it holds that op uses some attribute of b as one of its input parameters or writes

its result into some attribute of b;

◦ b′ is exclusively contained in b iff b′ , b, and b dominates b′, and there exists no

b′′ ∈ B, b′′ , b, b′′ , b′, such that b′′ dominates b′. y

By γ : B → P(B), we denote the function that relates every business object to the

corresponding set of business objects it exclusively contains.

The behaviour of an ES, or a MS system, is based on the invocation of operations

which consist of well-defined processing sequences governed by BO relationships. Such

sequences illustrate a particular execution pattern based on the structure and behaviour

of an organization. Therefore, we argue that a proper analysis of such process sequences

and BO relationships will help to derive prominent microserviceable components. This

3 https://www.sugarcrm.com/

4 http://churchcrm.io/



Fig. 1: A pattern of CRUD operations and BO relationships.

assumption leads us to derive an exclusive containment heuristic which assists in MS

discovery that aligns with Definition 2.1. As an example, assume that an ES induces a

pattern of CRUD operation dependencies depicted in Fig. 1; in the figure, each node

represents a CRUD operation. These operations further relate to the BOs on which they

are performed, see BO1, BO2, and BO3 in the figure. If BO2 is exclusively contained in

BO3, every time an operation that involves BO2 gets executed, it also processes BO3,

i.e. BO3 does not have an independent life-cycle and depends on BO2. If we decouple

software corresponding to the CRUD management of different BOs the communication

overhead between the software components will increase and will result in a lower level

of the system availability and efficiency. This understanding leads us to Heuristic 2.2.

Heuristic 2.2 (Exclusive containment)

A MS composed of a business object b ∈ B, a non-empty set of business objects

C ⊂ γ(b), and a non-empty set of operations D ⊆ OP, each performed over at least one

business object in {b} ∪ C (i.e., each operation in D either uses an attribute of some

business object in {b} ∪ C as an input parameter or writes its result into an attribute of

some business object in {b} ∪ C), when used as part of an MS system, leads to higher

levels of the system’s availability and scalability, and processing efficiency. y

An ES can consist of BOs which do not participate in the exclusive containment rela-

tionships with other BOs. A better understanding for a possible function splitting in the

presence of such BOs can be achieved through the knowledge of execution calls and

their frequencies, since the number of executions between different BOs plays a major

role in achieving processing efficiency and system availability. In general, if the num-

ber of communications between microservices increases, the number of network hops

between the microservices also increases, which inevitably results in lower availabil-

ity of the corresponding MS system and, consequently, long waiting times [1]. Hence,

a proper microservice discovery and recommendation technique should consider both



BO relationships, like exclusive containment, and execution frequencies of the opera-

tions over different BOs. Taking this understanding further, we developed an automated

microservice discovery process, which is described in the next section.

3 Automated Microservice Discovery

To perform microservice discovery, we developed a five-step approach, which is illus-

trated in Fig. 2. Since MSs are focused on accessing operations of BOs, or partitions

of BOs, in the system [13], we propose to start microservice discovery with the iden-

tification of the BOs used by a given ES, refer to step 1 in the figure. To derive the

BOs, we evaluate all the SQL queries of the given ES and identify the relationships

between database tables, which are then used to derive the BOs according to the ap-

proach described by Nooijen et al. [14]. In the second step, the operations performed

by the system are analysed using static analysis techniques and classified into different

categories based on their relationships and types, such as association create, association

delete, create and delete. The BOs derived from step one and the operations extracted

and categorised using step two are provided as the input to the third step, in which we

identify the containment relationships between different BOs as described in Section 3.1.

Fig. 2: Overview of the microservice discovery approach.

After performing the steps related to structural (i.e. static) analysis, behavioural

(i.e. dynamic) analysis is performed as the fourth step to generate the call graphs related

to the system execution. In this step, we use scripts to automate the system to generate

system execution logs based on user behaviours and then use those execution logs to

generate the call graphs. Finally, as the fifth step, all the structural and behavioural details

generated are provided to an optimization algorithm in order to discover an optimal

system splitting for MSs. The optimization algorithm analyses the BO relationships and

operation calls to provide a microservice recommendation, as described in Section 3.2.



3.1 Containment Derivation

As depicted in Fig. 2, in order to derive a satisfactory splitting of system operations and

BOs into MSs, the clustering and optimization algorithm needs two inputs, one from

structural analysis and the other from the behavioural analysis. To perform the structural

analysis to derive the BOs and the exclusive containment relationships among the BOs,

we have developed Algorithm 1 which is composed of five steps.

In an ES, the information related to a BO is often stored in several database tables.

Thus, one can define a BO b ∈ B as a collection of database tables which it is scattered

across, i.e. b ⊆ T . To identify the BOs, in the first step, the BOS function is performed by

Algorithm 1, which derives the BOs, B, of the system through the analysis of the database

table relationships and their data similarities, as described by Nooijen et al. [14]. In the

second step of the algorithm, function OPS performs static analysis of the system and

extracts all the operations OP of the system.

In the third step of Algorithm 1, the extracted operations get classified into those

performed on individual database tables and those performed over several tables linked

via foreign key relationships. Concretely, operations are classified into 4 categories,

as association create (OPc
a), association delete (OPd

a), create (OPc), and delete (OPd)

operations, refer to lines 4–17 of the algorithm; other operation types are not of interest

here. At the end of the loop of lines 4–17, variables OPc and OPd contain the create and

delete operations, respectively, that run over single database tables, while variables OPc
a

and OPd
a contain the operations that perform create and, respectively, delete operations

on multiple database tables related to multiple BOs.

In the general case, in a database, there can be foreign key relationships among the

tables that relate to the same BO b ∈ B. Such relationships are not important for the

exclusive containment derivation. Therefore, in Algorithm 1, filtration is done in order

to identify the create and delete association operations related to multiple BOs, in lines

5–13. To achieve this filtration, first, the TBLS function extracts the tables Tk related to

each association operation opk. Next, after confirming that the tables in Tk do not relate

to the same BO b, the algorithm adds the association operation to the respective set,

either OPc
a or OPd

a.

In the fourth step, Algorithm 1 identifies the BOs which are related by a create (OPc
a)

or delete (OPd
a) association operation, and stores them for further processing, in lines

18–22. Since association operations which occur within the same BO are not considered,

at this step the algorithm analyses the operations in OPc
a and OPd

a to identify related

BOs and stores them into pairs of BOs, Br ⊆ B × B.

Finally, in the fifth step, the algorithm evaluates whether any of the BOs related

through an association operation and stored in Br has its own create OPc or delete OPd

operation (i.e. an operation performed over all the tables of the BOs), and verifies that

at least one of the associated BOs is not associated with any other BOs of the system,

in lines 25–26. Given two BOs b, b′ ∈ B, if b′ does not have its own create OPc or

delete OPd operation, and if b′ does not participate in further exclusive containment

relationships with other BOs, except for the one it has with b, then we identify that b′ is

exclusively contained in b, as b′ does not have its own independent life-cycle apart from



Algorithm 1: Computing exclusive containment relationship over BOs

Input: Source code SC and database schema DB of an ES s.

Output: A function γ that captures exclusive containment relationships over

the business objects of s, and the set of all business objects B of s.

1 B = {b1 , . . . , bn} := BOS(SC, DB); // Identify BOs

2 OP =
〈

op1 , . . . , opm
〉

:= OPS(SC); // Identify operations

3 OPc
a := OPd

a := OPc := OPd := Br := ∅;

/* Classify operations in OP */

4 for each k ∈ [1 ..m] do

5 if opk is an association create operation then

6 Tk := TBLS(opk);
7 if � b ∈ B .Tk ⊆ b then

8 OPc
a := OPc

a ∪ {opk}; // Identify an association create operation

9 else if opk is an association delete operation then

10 Tk := TBLS(opk);
11 if � b ∈ B .Tk ⊆ b then

12 OPd
a := OPd

a ∪ {opk}; // Identify an association delete operation

13 else if opk is a create operation then

14 OPc := OPc ∪ {opk}; // Identify a create operation

15 else if opk is a delete operation then

16 OPd := OPd ∪ {opk}; // Identify a delete operation

17 end

18 for each bi ∈ B do

19 for each bj ∈ B, bi , bj , do

20 if ∃ op ∈ OPc
a ∪ OPd

a . (bi ∩ TBLS(op) , ∅) ∧ (bj ∩ TBLS(op) , ∅) then

21 Br := Br ∪ {(bi, bj)};

22 end

23 end

24 for each (b, b′) ∈ Br do

25 if (� op ∈ OPc ∪ OPd . b ∪ b′ ⊆ TBLS(op)) ∧
({b′′ ∈ B \ {b} | (b′, b′′) ∈ Br } = ∅) then

26 Record in γ that b′ is exclusively contained in b, i.e., b′ ∈ γ(b);

27 end

28 return γ, B

b (i.e. b′ is created and destroyed together with b). In the last line of the algorithm, the

identified exclusive containment relationships γ and the BOs of the system get returned.

In addition to the identification of exclusive containment relationships over the BOs

of the system through structural analysis, behavioural analysis should be performed to

generate the call graphs to extract the details such as the graph nodes, execution calls

between the nodes and the number of calls between the nodes. These structural data and

behavioural analysis details are provided to the multi-objective optimization algorithm

for further processing, as described in Section 3.2.



3.2 NSGA II Clustering and Optimization

The Non-dominated Sorting Genetic Algorithm II (NSGA II) is a multi-objective opti-

mization algorithm which provides an optimal set of solutions while achieving global

optima, when there are multiple conflicting objectives to be considered [16]. It has been

evaluated as one of the best algorithms to cluster software packages and classes while

achieving multiple objectives such as high cohesion and low coupling [5].

Since MS discovery should evaluate two major objectives to extract an optimal set

of MSs, NSGA II was chosen to guide the extraction. The first objective is to minimize

the number of communications between different nodes in the execution call graphs

(i.e. the cost of calls between different MSs). The second objective is to minimize

the clustering distance of operations and the BOs (i.e. the cost of clustering BOs). A

better understanding of the two objectives can be achieved by referring to Fig. 1. When

considering the nodes in the figure, one can decide to split the operations related to

BO2 and BO3 into two groups in several ways. For example, a possible pair of groups

can be ‘B, C, D, F, E, G’ and ‘H, I’, whereas ‘B, C, D, F’ and ‘E, G, H, I’ would be

another such pair of groups. If two MSs get implemented based on the first splitting

of the operations, then BO3 gets shared between the two MSs, which one may argue

is not optimal. However, one can also argue that the splitting which ensures that each

of the two BOs, i.e., BO2 and BO3, gets managed by a dedicated MS leads to a higher

communication cost. In the figure, edge weights denote the numbers of calls between

operations. Thus, the communication cost of the MSs according to the first splitting is

equal to four, while according to the second splitting it is equal to seven.

For real system executions with thousands and millions of nodes and calls, deriving

an optimal function splitting of the system with related BOs is a complicated task.

Therefore, the NSGA II algorithm was modified to provide a set of optimal solutions as

described in Algorithm 2.

Fig. 3: Crossover to generate child population.

In order to derive optimal solutions, Algorithm 2 follows 3 steps and requires

the population size (n), number of generations (Gen), chromosome length (C_Len),

crossover probability (Cr_Prob) and mutation probability (Mut_Prob) as input data.

Apart from the above standard parameters, our algorithm requires further input, such

as the exclusively contained BO relationships (γ), BOs of the system (B) which were

derived from Algorithm 1, and execution graph nodes (N) and their relationships (R)
extracted from the execution graphs. In the algorithm, the population size (n) defines how

many chromosomes are populated in a single generation, while the number of generations



(Gen) defines the number of times the algorithm generates different populations before it

stops. The crossover probability (Cr_Prob) and mutation probability (Mut_Prob) define

the probability for performing crossover and mutation on chromosomes. Interested

readers can find further details about NSGA II in A fast and elitist multiobjective

genetic algorithm: NSGA-II by Deb et al. [16].

In the first step of Algorithm 2, the SYNTHESIZEPOP function synthesizes a parent

population of the given size n (see line 1). SYNTHESIZEPOP uses a random number

generator to generate chromosomes of length C_Len, where a chromosome is a sequence

of numbers each representing a node in the execution graph. A chromosome generated

for the execution graph in Fig. 1 can be represented as a sequence of numbers ‘0, 1, 2,

3, 4, 5, 6, 7, 8’, as depicted in Fig. 3, in which the numbers refer to the nodes in ‘A, B,

C, D, E, F, G, H, I’, such that 0 refers to A, 1 refers to B, etc. Apart from generating the

parent population, SYNTHESIZEPOP calculates and stores the fitness for each parent.

The fitness calculation is preformed in two steps. First, the algorithm calculates the

maximum cost for a chromosome as
∑C_Len

i=0
2i . Then, the algorithm calculates the

cost of clustering as the cost of BO splittings and calls between the clusters. The node

clustering cost represents to which extent the nodes related to the same BO have been

grouped together. The information about the relationships between the nodes and BOs

can be obtained through B (BOs) and N (operation nodes), as depicted in Fig. 4. For

example, using the information provided in Fig. 4, it is clear that node ‘4’ (or node ‘E’

in Fig. 1) is associated with BO3, and node ‘5’ (or node ‘F’ in Fig. 1) is associated with

BO2; refer to the directed arcs in Fig. 4. If there is an exclusive containment relationship

between two BOs, they are combined and supplied as a single BO to the algorithm. For

example, if BO1 and BO2 are in the exclusive containment relationship, then B in Fig. 4

must be replaced with 〈1, 1, 1, 1, 2, 1, 2, 2, 2〉, where 1 stands for the combination of BO1

and BO2, and 2 represents BO3.

Fig. 4: Example data provided to NSGA II for the execution graph in Fig. 1.

Given the B and N information for the graph in Fig. 1, the best BO clustering would

be ‘A’, ‘B, C, D, F’, ‘E, G, H, I’, which leads to the chromosome ‘0, 1, 2, 3, 5, 4, 6,

7, 8’. For each chromosome, the clustering cost is calculated as
∑C_Len

i=0
2d , where d is

the distance from the first occurrence of a node related to a particular BO to the next

occurrence of the node related to the same BO within the chromosome. For example, if

we calculate the clustering cost for the three clusters ‘0’, ‘1, 2, 3, 5’, and ‘4, 6, 7, 8’, the

first cluster contains only one node and, thus, contributes 20 to the clustering cost. The

second cluster contains four nodes, i.e. ‘1, 2, 3, 5’. Node ‘1’ is the first node that relates

to BO2, which contributes the cost of 20, as the first node of the second cluster. However,



subsequent nodes ‘2’, ‘3’, and ‘5’, which are also associated with BO2, contribute the

costs of 21, 22, 23, respectively. Hence, if we generate the costs associated with each

node ‘0, 1, 2, 3, 5, 4, 6, 7, 8’, i.e. including the nodes that relate to BO3, these will be

20
, 20
, 21
, 22
, 23
, 20
, 21
, 22
, 23, which leads the total clustering cost of ‘31’.

Algorithm 2: NSGA II Algorithm

Input: n,Gen,C_Len,Cr_Prob,Mut_Prob, γ, B, N, R

Output: A list of optimized clustering of BOs and OPs for MSs

1 Popp
=

〈

pop1 , . . . , popn
〉

:= SYNTHESIZEPOP(n,C_Len, γ,B,N,R);

2 Popc := Rankf := 〈〉;
/* Perform crossover and mutation to generate child population */

3 while Popc
.length() < n do

4 if RANDOM(0, 1) < Cr_Prob then

5 Popc := CROSSOVER(Popp
,Popc);

6 if RANDOM(0, 1) < Mut_Prob then

7 Popc := MUTATION(Popp
,Popc);

8 end

9 for each i ∈ [1 ..Gen] do

10 Popt := Popp
+ Popc;

11 Rankf
=

〈

rank
f

1
, . . . , rank

f
m

〉

:= FASTNONDOMINATEDSORT(Popt);

12 if i == Gen then

13 break;

/* Identify the Pareto front of the generated population and rank them */

14 Popc := 〈〉;
15 for k ∈ [1 ..m] do

16 if rank
f

k
.length() < (n − Popc.length()) then

17 Popc := Popc
+ rank

f

k
;

18 else

19 Popc := Popc
+ CROWDCOMPARISONSORT(rank

f

k
);

20 end

21 Popp := Popc; // Initialize new parent population

22 Popc
=

〈

popc
1
, . . . , popc

n

〉

:= SYNTHESIZECHILD(Popp);

23 end

24 return (Rank f )

The cost of execution calls between clusters is computed as the sum of inter-cluster

calls between the different clusters. For the running example, i.e. the chromosome ‘0, 1,

2, 3, 5, 4, 6, 7, 8’, this sum would be 5 + 3 + 4 = 12, because the costs of calls between

the pairs of clusters in ‘0’, ‘1, 2, 3, 5’, ‘4, 6, 7, 8’, are ‘5’, ‘3’ and ‘4’. The information

on the costs of the calls between the nodes is extracted from the R relation, depicted in

Fig. 4. For example, the number of calls between node ‘A’ (i.e. node ‘0’) and node ‘B’

(i.e. node ‘1’) is 5; this is given as 0-1-5 in R, refer to Fig. 4. Note that R is constructed

based on the edge weights in Fig. 1. The cost of execution calls is often by far smaller

than the cost of clustering. As this may create a bias in the optimization results, in

order to minimize such effects, the total cost of calls is multiplied by a fixed number y.



Afterwards, the fitness of the chromosome is calculated by subtracting the sum of all the

cluster costs and the sum of the cost of inter-cluster calls from the maximum possible

cost of the chromosome
∑C_Len

i=0
2i .

The second step of the algorithm generates the child population by performing

crossover operations and mutation operations on the parent chromosomes (see lines

3–8). In order to perform the crossover operation, the algorithm selects two parents

using binary tournament selection [16]. This is performed by randomly identifying two

parent chromosomes and extracting the chromosome with the highest fitness value out of

them. After identifying two parent chromosomes for crossover, the algorithm splits the

first parent chromosome from a predefined position (normally half of the chromosome

length) and includes it as the first part of the child chromosome. In general, as the next

step, a regular genetic algorithm would extract the other part from the second parent

chromosome. However, in this situation, the child chromosome should not contain

repeating node values. As such, the rest of the child chromosome is generated by

extracting values from the other parent which are not in the first part of the child

chromosome as depicted in Fig. 3. Mutation is achieved by changing the position of two

genes (i.e. positions of two nodes) in the parent chromosome.

After generating the first child population, the algorithm generates Gen new pop-

ulations, refer to lines 9–23 in Algorithm 2; which constitutes the third (and last) step

of the algorithm. First, the current total population Popt is computed at line 10 by

concatenating the parent population Popp and the child population Popc. Next, the algo-

rithm calculates the non-dominated fronts, or the Pareto fronts, of the total population.

A non-dominated front contains the chromosomes which have the optimal values for

the two objectives that were defined above, namely the cost of node clustering and the

cost of calls. The chromosome’s optimization of node clustering is calculated as the

difference between the maximum possible cost of the chromosome and cost of its node

clustering. Similarly, the chromosome’s optimization of execution calls is calculated as

the difference between the maximum possible cost of the chromosome and cost between

its cluster calls. The non-dominated chromosomes in Popt are extracted as the first front

using function FASTNONDOMINATEDSORT (see line 11). After extracting the first

non-dominated front, the algorithm evaluates the other chromosomes in Popt and identi-

fies the second non-dominated front. This process is repeated until all the chromosomes

are categorised into different fronts (2, . . ., m), where each generated front may contain

multiple non-dominated chromosomes.

Once the Pareto fronts are obtained, a new child population is created by concatenat-

ing the ranked fronts in several steps (see lines 14–20). First, the algorithm verifies that

there is enough space in the child population to add all the chromosomes in each ranked

front rank
f

k
by comparing the remaining space in the child population (n − Popc

.length())
with the rank front size rank

f

k
.length() (see line 16). If there is enough space, the rank

front is directly added to the child population (see line 17). If there is no space, then

the algorithm identifies the most prominent chromosomes in the front using a crowd

comparison sort [16] and assigns them to the child population (see line 19). Through

the loop of lines 15–20, the algorithm filters out the chromosomes in the total pop-

ulation Popt with the highest objective fitness values. The new population is used as

the next parent population and again synthesizes a new child population by performing



crossover and mutation (see lines 21–22). Finally, the non-dominated front (the Pareto

optimal solution) Rankf is returned to the user which constitutes a suggestion for the

best clustering of BOs and operation nodes in the system to develop MSs, line 24.

4 Implementation and Validation

A proper MS system should provide high execution efficiency with desirable levels

of scalability and availability. Furthermore the packages and components related to

each MS should be highly cohesive and loosely coupled [1, 17]. In order to validate

that our MS discovery and recommendation process provides MSs with these desirable

characteristics, while optimizing BO relationships and operation call costs, we developed

a prototype5 based on the algorithms presented in Section 3 and experimented with it

on the SugarCRM and ChurchCRM Systems.

This section presents the details of the experiments that we conducted on both

the SugarCRM and ChurchCRM customer relationship management systems. Sugar-

CRM contains 8116 source files and 600 attributes divided between 101 tables, while

ChurchCRM contains 8039 source files and 350 attributes divided between 55 tables.

Execution sequences were generated for both systems covering all the major function-

alities and user cases related to them6. The logs related to both systems were captured

using the log generation functionality available in the systems. They were then analyzed

using the process mining tool Disco7 and call graphs were generated for SugarCRM

with 178 unique nodes and for ChurchCRM with 58 unique nodes. Each of the nodes in

call graph represents unique operation performed on database tables in the systems and

the edges between each node represent the number of calls between the nodes.

Discovered MSs: Based on the provided data, the prototype managed to identify

13 different business objects related to SugarCRM such as ‘action control lists’, ‘calls’,

‘contacts’, ‘campaigns’, ‘meetings’, ‘users’, ‘prospects’, ‘accounts’, ‘documents’, ‘leads’,

‘emails’, ‘projects’ and ‘email management’. The ‘calls’ and ‘meetings’ BOs are exclu-

sively contained in ‘contacts’ BO and ‘documents’ BO exclusively contained in ‘users’

BO. The system identified 12 BOs such as ‘calendar’, ‘locations’, ‘deposits’, ‘emails’,

‘events’, ‘family’, ‘group’, ‘property’, ‘query’, ‘users’ and ‘kiosk’ for ChurchCRM. The

BOs identified and the call graphs with execution details were given to the optimization

algorithm and it derived 8 MSs for ChurchCRM and 11 MSs for SugarCRM.

Validation Process: The validation process was conducted by implementing two

MSs for each system in Google Cloud. Each MS was hosted in Google Cloud using

a cluster of size 2 which has two virtual CPUs and a total memory of 7.5 GB. The

hosted MSs were exposed through the Google Cloud kubernetes API8, allowing third

party computers to access them via API calls. In order to simulate the legacy systems

we created services which contain all the functionalities related to both MSs. The read

and write operations to the local database were simulated by reading and writing data

to a file resides in the MSs, themselves.

5 https://github.com/AnuruddhaDeAlwis/NSGAII.git

6 http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/

7 https://fluxicon.com/disco/

8 https://kubernetes.io/



In order to validate the performance of the ChurchCRM MS system, evaluation was

conducted under two criteria. First we tested each MS system against a load of 150,000

and 300,000 requests generated by 10 machines simultaneously, simulating the customer

requests, while recording their total execution time, average memory consumption and

average disk consumption. Then, we tested the same load against the legacy ChurchCRM

system. In this execution we directly call the functions related to each MS without

creating any interactions between the MSs. The results obtain are recorded in Table 3.

However, in the real environment MSs interact with each other through executions

and service calls. As such, to evaluate the performance of the MS system when there

are interactions between MSs in the system, we generated service calls between them

and tested against a similar load as described previously. The results obtained for the

interactive execution are recorded in Table 5. We followed a similar approach to test the

MS system related to SugarCRM with a load of 50,000 requests and 100,000 requests

generated by 10 machines simultaneously. The results for the SugarCRM MS system

without interaction between them are recorded in Table 7, while Table 9 contains the

results obtained when there are interactions between MSs in the MS system. Since

we have identified several exclusive containment relationships in SugarCRM, it was

important to evaluate the validity of our Heuristic. As such, we implemented two MS

systems. The first MS system contained two MSs which are exclusively related, but

deployed in separate containers. The second MS system contained operations of both

exclusively related BOs and deployed in a single container. Both systems were tested

against a load of 50,000 requests and 100,000 requests generated by 10 machines and

the obtained results are summarized in Table 11.

Based on the results detailed in Tables 3, 5, 7, 9 and 11 we calculated the scalability,

availability and execution efficiency of different combinations and the results obtained

are summarized in Tables 4, 6, 8, 10 and 12. Scalability was calculated according to

the resources usage over time as described by Tsai et al. [19]. In order to determine

availability, first we calculated the time taken to process 100 requests if a particular

MS is not available. Then, we used the difference between the total up-time and total

down-time as described by Bauer et al. [20]. Efficiency gain was calculated by dividing

the total time taken by the legacy system to process all requests by the total time taken by

the corresponding MS system. Furthermore, we calculated the structural cohesion and

coupling of the packages in the legacy system and the new MS systems, as described

by Candela et al. [5]. The results related to cohesion and coupling for the MSs and the

legacy systems are summarized in Table 1 and 2.

Experimental Results: According to Tsai et al. [19], the lower the number the

better the scalability. Thus, it is evident that the ChurchCRM legacy system has better

scalability, availability and efficiency than MS system when there are no interaction

between modules (refer Table 4). However, when there are interactions, MS system

perform better in all three criteria of scalability, availability and efficiency than the legacy

system as depicted in Table 6. When there are no interactions between modules, the

SugarCRM MS system achieved less scalability than the legacy system (refer Table 8).

However, the SugarCRM MS system managed to attain higher availability and eight

times better execution efficiency than the legacy system when there are no interactions

between MSs in the MS system as depicted in Table 8. When there are interactions



between modules in SugarCRM, MS system performed better in all criteria than the

legacy system as depicted by Table 10. Apart from legacy system comparisons, it

is evident from Table 12 that exclusively contained MSs attained a higher level of

scalability, availability and efficiency gain when they were developed and deployed as

single MSs without separating them into different containers.

According to Candela et al. [5], lack of cohesion and structural coupling are inversely

related to the cohesion and coupling of the system. The lower the number the better the

cohesion and coupling of the system [5]. When considering the cohesion and coupling

values of ChurchCRM MSs in Table 1, it is evident that they have obtained better

cohesion and coupling values than the legacy system. Even though Table 2, related

to SugarCRM MSs, does not show a prominent gain in cohesion and coupling values

related to all MSs, most of them manage to achieve either better cohesion or coupling

values when compared with the legacy system.

The obtained results have affirmed that the MSs extracted based on the optimization

algorithm and the recommendation of the prototype can provide the same services to

users while preserving overall system behaviour and achieving higher scalability, avail-

ability, efficiency, high cohesion and low coupling while aligning with BO relationships

and containment heuristics.

5 Related Work

Microservices have emerged as the latest style of service-based software allowing sys-

tems to be distributed through the cloud as fine-grained components, typically with

individual operations, in contrast to services under SOA which include all logically

related operations [1]. Even though microservices can support the evolution of ERP

systems by providing exploitation in cloud-enabled platforms such as the IoT [2], the

research conducted in this particular area is limited. To the best of our knowledge there is

no research related to the automation of MS discovery in legacy systems, apart from the

manual migrations achieved by Balalaie et al. [21]. They have described the complexity

associated with the system reengineering process while pointing out the importance

of considering BOs and their relationships in the system migration process. Martin

Fowler emphasizes the importance of adapting BO relationships in microservices [17]

by mentioning the Domain Driven Design (DDD) principles [18].

However, existing software re-engineering techniques do not consider the complex

relationship of BOs along with their behaviours in the re-engineering process. Fur-

thermore, studies show that the success rate of existing software re-modularisation

techniques, especially for large systems, remains low [5]. A key stumbling block is

the limited insights available from syntactic structures of software code for profiling

software dependencies and evaluating their measurements for coupling and cohesion

metrics [4]. As such, to derive successful re-engineering techniques, a methodology

should consider the enriched semantic insights available through the BOs and functions

in an ES.

In such a process the first challenge would be identifying the BOs which are dis-

tributed among several database tables in an ES system, while identifying the relation-

ships among them. Nooijen et al. [14] and Lu et al. [9] have proposed methodologies



Table 1: Comparison of lack of cohesion and structural coupling in ChurchCRM.

Measure Legacy MS1 MS2 MS3 MS4 MS5 MS6 M7S MS8

Lack of Cohesion 122 32.5 0.0 0.5 0.5 0.0 0.0 0.5 1.0

Structural Coupling 58 45.5 9.5 11.0 11.5 9.5 10.0 12.0 13.0

Table 2: Comparison of lack of cohesion and structural coupling in SugarCRM.

Measure Legacy MS1 MS2 MS3 MS4 MS5 MS6 M7S MS8 MS9 MS10 MS11

Lack of Cohesion 0.428 0.0 2.0 0.25 0.0 0.5 0.2 0.0 0.0 0.0 1.0 0.11

Structural Coupling 7.857 3.0 17.33 12.0 9.0 20.0 11.8 15.7 5.0 24.0 14.67 8.1

Table 3: Legacy vs MS results without interactions between modules for ChurchCRM.

System Type No of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (MB)

Legacy 150000 280800 3.0075 25.49

Legacy 300000 540000 3.084 45.719

MS System 150000 306000 2.915 25.094

MS System 300000 626400 3.018 46.369

Table 4: Legacy vs MS System characteristics comparison for ChurchCRM.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[150000]

Availability

[300000]

Efficiency

[150000]

Efficiency

[300000]

Legacy 1.896 3.3166 99.8754 99.940 1.00 1.00

MS System 2.169 3.8716 99.8642 99.930 0.92 0.86

Table 5: Legacy vs MS results with interactions between modules for ChurchCRM.

System Type No of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (MB)

Legacy 150000 756000 3.043 25.225

Legacy 300000 1188000 3.1025 45.192

MS System 150000 709200 2.89 13.502

MS System 300000 954000 3.0043 24.239

Table 6: Legacy vs MS System characteristics comparison with interactions between

modules for ChurchCRM.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[150000]

Availability

[300000]

Efficiency

[150000]

Efficiency

[300000]

Legacy 1.259 2.212 99.665 99.685 1.00 1.00

MS System 0.941 1.624 99.868 99.894 1.07 1.26



Table 7: Legacy vs MS results without interactions between modules for SugarCRM.

System Type No of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (MB)

Legacy 50000 1101600 2.9325 25.36

Legacy 50000 2394000 2.94 25.48

MS System 100000 122400 2.953 25.20

MS System 100000 298800 3.0605 45.99

Table 8: Legacy vs MS System characteristics comparison for SugarCRM.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[50000]

Availability

[100000]

Efficiency

[50000]

Efficiency

[100000]

Legacy 2.367 2.372 95.779 97.662 1.000 1.000

MS System 3.088 5.438 99.512 99.702 9.000 8.012

Table 9: Legacy vs MS results with interactions between modules for SugarCRM.

System Type No of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (MB)

Legacy 50000 72000 2.941 24.789

Legacy 100000 169200 3.119 48.866

MS System 50000 72000 2.898 19.712

MS System 100000 140400 4.088 43.174

Table 10: Legacy vs MS System characteristics comparison with interactions between

modules for SugarCRM.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[50000]

Availability

[100000]

Efficiency

[50000]

Efficiency

[100000]

Legacy 2.929 5.443 99.713 99.831 1.000 1.000

MS System 2.682 4.164 99.713 99.859 1.000 1.21

Table 11: Exclusive MS vs separated MSs execution results for SugarCRM.

System Type No of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (MB)

Exclusive MS System 50000 64800 2.9965 25.116

Exclusive MS System 100000 136800 3.0700 25.471

Separated MS System 50000 237600 3.0025 25.321

Separated MS System 100000 1252800 3.0218 36.009



Table 12: Exclusive MS vs separated MSs characteristics comparison for SugarCRM.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[50000]

Availability

[100000]

Efficiency

[50000]

Efficiency

[100000]

Exclusive MS System 2.283 2.260 99.971 99.984 3.67 5.27

Separated MS System 13.99 19.77 99.895 99.861 1.00 1.00

and heuristics to identify BOs based on the database schema and information in database

tables. However, according to Lu et al. these derived BOs might not be perfect and they

have to be re-clustered with the help of human expertise. Furthermore, Fuguo et al.

have derived BO relationships using the information available in WSDL files and have

classified the BO relationships into exclusive containment, inclusive containment, sub-

type and etc [12]. Apart from BO relationships, the number of execution calls between

different microservices plays a major role in defining optimal MSs, because an excessive

number of network calls can increase the response time while decreasing the availability

of the service [1].

A proper identification of factors which fall under the behaviour of the system can

be evaluated thorough dynamic analysis of the system [13]. However, there is still a

gap in the area of correlating structural and behavioural analysis while considering the

underlying BO semantics. As such, it is important to consider optimization techniques

such as genetic algorithms to incorporate multiple objectives (i.e. system structure and

behaviour) [5] in the software re-engineering process while focusing on BO relationships

and the execution calls between different operations.

6 Conclusion

This paper presented a technique that can support the re-engineering of enterprise

systems into microservices based on business objects and their relationships and asso-

ciated operations with the coherent features and minimum communication overhead. A

prototype was developed based on the proposed heuristic and the NSGA II optimiza-

tion algorithm, and a validation was conducted using the implemented MS systems

recommended by the prototype for SugarCRM and ChurchCRM systems. The paper

demonstrated that the analysis of functions, CRUD operations, and BO relationships of

an ES supports the effective identification of a solution to migrate the system into the

corresponding MS system that has high cohesion, low coupling, and achieves higher

scalability, higher availability, and processing efficiency.

References

1. Newman, S.: Building MSs NGINX. 1st edn. O’Reilly, Sebastopol (2015)

2. 2017 Internet Of Things (IoT) Intelligence Update, https://www.forbes.com/sites/

louiscolumbus/2017/11/12/2017-internet-of-things-iot-intelligence-update/#43aa6f4c7f31.

Last accessed 5 May 2018



3. Magal, S.R. and Word, J.: Integrated business processes with ERP systems. 1st edn. Wiley

Publishing, (2011)

4. Anquetil, N. and Laval, J.: Legacy software restructuring: Analyzing a concrete case. In Soft-

ware Maintenance and Reengineering (CSMR). In: Software Maintenance and Reengineering

(CSMR) 15th European Conference, pp. 279–286 (2011)

5. Candela, I., Bavota, G., Russo, B. and Oliveto, R.: Using cohesion and coupling for soft-

ware remodularization: Is it enough?. In: ACM Transactions on Software Engineering and

Methodology (TOSEM), pp. 24. (2016)

6. Shatnawi, A., Seriai, A.D., Sahraoui, H. and Alshara, Z.: Reverse engineering reusable soft-

ware components from object-oriented APIs. In: Journal of Systems and Software, pp. 442–

460. (2017)

7. Barros, A., Decker, G., Dumas, M., and Weber, F.: Correlation patterns in service-oriented ar-

chitectures. In: Proceedings of the 10th International Conference on Fundamental Approaches

to Software Engineering (FASE), pp. 245–259. Springer, (2007)

8. Pẽrez Castillo, R., Garcĩa Rodrĩguez de Guzmãn, I., Caballero, I. and Piattini, M.: Software

modernization by recovering Web services from legacy databases. In: Journal of Software:

Evolution and Process, pp. 507–533. (2013)

9. Lu, X., Nagelkerke, M., van de Wiel, D. and Fahland, D.: Discovering interacting artifacts

from ERP systems. In: IEEE Transactions on Services Computing, pp. 861–873. (2015)

10. De Alwis, A., Barros, A., Polyvyanyy, A. and Fidge, C.: Function-Splitting Heuristics for

Discovery of Microservices in Enterprise Systems. In: In International Conference on Service-

Oriented Computing, (2018) (accepted on July 25, 2018)

11. Kumaran, S., Liu, R. and Wu, F.Y.: On the duality of information-centric and activity-

centric models of business processes. In: In International Conference on Advanced Information

Systems Engineering, pp. 32–47. Springer, Berlin, Heidelberg (2008)

12. Wei, F., Ouyang, C. and Barros, A.: Discovering behavioural interfaces for overloaded web

services. In: Services (SERVICES), 2015 IEEE World Congress, pp. 286–293 (2015)

13. Hull, R.: Artifact-centric business process models: Brief survey of research results and

challenges. In : On the Move to Meaningful Internet Systems, pp. 1152–1163. Springer (2008)

14. Nooijen, E.H.J, van Dongen, B. F. and Fahland, D.: Automatic discovery of data-centric and

artifact-centric processes. In : In International Conference on Business Process Management,

pp. 316–327. Springer (2012)

15. Hayes, I.: Specification case studies, 2nd edn. Prentice Hall International Ltd. UK (1987)

16. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. In: IEEE transactions on evolutionary computation, pp. 182-197.

(2002)

17. Microservices a definition of this new architectural term,

https://martinfowler.com/articles/microservices.html. Last accessed 3 May 2018

18. Evans, E.: Domain-driven design: tackling complexity in the heart of software, 1st edn.

Addison-Wesley Professional (2003)

19. Tsai, W.T., Huang, Y. and Shao, Q.: Testing the scalability of SaaS applications. In:

Service-Oriented Computing and Applications (SOCA), IEEE International Conference, pp.

1–4. (2011)

20. Bauer, E. and Adams, R.: Reliability and availability of cloud computing, 1st edn. John Wiley

& Sons (2012)

21. Balalaie, A., Heydarnoori, A. and Jamshidi, P.: Migrating to cloud-native architectures using

MSs: an experience report, In European Conference on Service-Oriented and Cloud Comput-

ing, pp. 201–215. Springer (2015)


